On a two-sided Turán problem.
We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than x. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about Δ-systems (also known as sunflowers).
Hypergraphs of order n are mutually packable if one can find their edge disjoint copies in the complete hypergraph of order n. We prove that two hypergraphs are mutually packable if the product of their sizes satisfies some upper bound. Moreover we show that an arbitrary set of the hypergraphs is mutually packable if the sum of their sizes is sufficiently small.