Page 1

Displaying 1 – 4 of 4

Showing per page

Infinite paths and cliques in random graphs

Alessandro Berarducci, Pietro Majer, Matteo Novaga (2012)

Fundamenta Mathematicae

We study the thresholds for the emergence of various properties in random subgraphs of (ℕ, <). In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.

Invariance groups of finite functions and orbit equivalence of permutation groups

Eszter K. Horváth, Géza Makay, Reinhard Pöschel, Tamás Waldhauser (2015)

Open Mathematics

Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections...

Iterated arc graphs

Danny Rorabaugh, Claude Tardif, David Wehlau, Imed Zaguia (2018)

Commentationes Mathematicae Universitatis Carolinae

The arc graph δ ( G ) of a digraph G is the digraph with the set of arcs of G as vertex-set, where the arcs of δ ( G ) join consecutive arcs of G . In 1981, S. Poljak and V. Rödl characterized the chromatic number of δ ( G ) in terms of the chromatic number of G when G is symmetric (i.e., undirected). In contrast, directed graphs with equal chromatic numbers can have arc graphs with distinct chromatic numbers. Even though the arc graph of a symmetric graph is not symmetric, we show that the chromatic number of the...

Currently displaying 1 – 4 of 4

Page 1