Lattices of convex equivalences
The concepts of bounded subset, complete subset and directed subset, wich are well known in the context of partially ordered sets (X,≤), are extended in order to become appliable, with coherence, in fuzzy relational systems (X,R). The properties of these generalized structures are analyzed and operative exemples of them are presented.
Formalization of a part of [11]. Unfortunately, not all is possible to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3. It states that there exists x ∈ M1 such that M1(x) > N1(x) and (∀y ∈ N1)x ⊀ y. It should be M1(x) ⩾ N1(x). Nevertheless we do not know whether x ∈ N1 or not and cannot prove the contradiction. In the article we referred to [8], [9] and [10].
Several open problems posed during FSTA 2006 (Liptovský Ján, Slovakia) are presented. These problems concern the classification of strict triangular norms, Lipschitz t-norms, interval semigroups, copulas, semicopulas and quasi- copulas, fuzzy implications, means, fuzzy relations, MV-algebras and effect algebras.
The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of -polars are studied. Connections between -polars and prime ideals, especially in distributive sets, are found.