The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An abstract form of modus ponens in a Boolean algebra was suggested in [1]. In this paper we use the general theory of Boolean equations (see e.g. [2]) to obtain a further generalization. For a similar research on Boolean deduction theorems see [3].
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...
We study deterministic one-way communication complexity
of functions with Hankel communication matrices.
Some structural properties of such matrices are established
and applied to the one-way two-party communication complexity
of symmetric Boolean functions.
It is shown that the number of required communication bits
does not depend on the communication direction, provided that
neither direction needs maximum complexity.
Moreover, in order to obtain an optimal protocol, it is
in any case sufficient...
Currently displaying 1 –
13 of
13