Compatible partial orderings in Boolean algebras
This is an expository paper about constructions of locally compact, Hausdorff, scattered spaces whose Cantor-Bendixson height has cardinality greater than their Cantor-Bendixson width.
This paper deals with ordered rings and f-rings. Some relations between classes of ideals are obtained. The idea of subunity allows us to study the possibility of embedding the ring in a unitary f-ring. The Boolean algebras of idempotents and lattice-isometries in an f-ring are studied. We give geometric characterizations of the l-isometries and obtain, in the projectable case, that the Stone space of the Boolean algebra of l-isometries is homeomorphic to the space of minimal prime ideals with the...