Previous Page 3

Displaying 41 – 49 of 49

Showing per page

Another note on countable Boolean algebras

Lutz Heindorf (1996)

Commentationes Mathematicae Universitatis Carolinae

We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.

Automorphisms of ( λ ) / κ

Paul Larson, Paul McKenney (2016)

Fundamenta Mathematicae

We study conditions on automorphisms of Boolean algebras of the form ( λ ) / κ (where λ is an uncountable cardinal and κ is the ideal of sets of cardinality less than κ ) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of ( 2 κ ) / κ which is trivial on all sets of cardinality κ⁺ is trivial, and that M A implies both that every automorphism of (ℝ)/Fin is trivial on a cocountable set and that every automorphism of (ℝ)/Ctble is trivial.

Currently displaying 41 – 49 of 49

Previous Page 3