Semiregularity of congruences implies congruence modularity at 0
We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of is semiregular then is congruence modular at 0.
We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of is semiregular then is congruence modular at 0.
In the present paper we consider algebras satisfying both the congruence extension property (briefly the CEP) and the weak congruence intersection property (WCIP for short). We prove that subalgebras of such algebras have these properties. We deduce that a lattice has the CEP and the WCIP if and only if it is a two-element chain. We also show that the class of all congruence modular algebras with the WCIP is closed under the formation of homomorphic images.