The congruence lattice of implication algebras.
We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results...