Displaying 41 – 60 of 261

Showing per page

Finite atomistic lattices that can be represented as lattices of quasivarieties

K. Adaricheva, Wiesław Dziobiak, V. Gorbunov (1993)

Fundamenta Mathematicae

We prove that a finite atomistic lattice can be represented as a lattice of quasivarieties if and only if it is isomorphic to the lattice of all subsemilattices of a finite semilattice. This settles a conjecture that appeared in the context of [11].

Finite basis problem for 2-testable monoids

Edmond Lee (2011)

Open Mathematics

A monoid S 1 obtained by adjoining a unit element to a 2-testable semigroup S is said to be 2-testable. It is shown that a 2-testable monoid S 1 is either inherently non-finitely based or hereditarily finitely based, depending on whether or not the variety generated by the semigroup S contains the Brandt semigroup of order five. Consequently, it is decidable in quadratic time if a finite 2-testable monoid is finitely based.

Finitely generated almost universal varieties of 0 -lattices

Václav Koubek, Jiří Sichler (2005)

Commentationes Mathematicae Universitatis Carolinae

A concrete category 𝕂 is (algebraically) universal if any category of algebras has a full embedding into 𝕂 , and 𝕂 is almost universal if there is a class 𝒞 of 𝕂 -objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of 0 -lattices which are almost universal.

Group conjugation has non-trivial LD-identities

Aleš Drápal, Tomáš Kepka, Michal Musílek (1994)

Commentationes Mathematicae Universitatis Carolinae

We show that group conjugation generates a proper subvariety of left distributive idempotent groupoids. This subvariety coincides with the variety generated by all cancellative left distributive groupoids.

Hyperidentities in many-sorted algebras

Klaus Denecke, Somsak Lekkoksung (2009)

Discussiones Mathematicae - General Algebra and Applications

The theory of hyperidentities generalizes the equational theory of universal algebras and is applicable in several fields of science, especially in computers sciences (see e.g. [2,1]). The main tool to study hyperidentities is the concept of a hypersubstitution. Hypersubstitutions of many-sorted algebras were studied in [3]. On the basis of hypersubstitutions one defines a pair of closure operators which turns out to be a conjugate pair. The theory of conjugate pairs of additive closure operators...

Lattices of relative colour-families and antivarieties

Aleksandr Kravchenko (2007)

Discussiones Mathematicae - General Algebra and Applications

We consider general properties of lattices of relative colour-families and antivarieties. Several results generalise the corresponding assertions about colour-families of undirected loopless graphs, see [1]. Conditions are indicated under which relative colour-families form a lattice. We prove that such a lattice is distributive. In the class of lattices of antivarieties of relation structures of finite signature, we distinguish the most complicated (universal) objects. Meet decompositions in lattices...

Lattice-theoretically characterized classes of finite bands

Reinhard Thron, Jörg Koppitz (2003)

Archivum Mathematicum

There are investigated classes of finite bands such that their subsemigroup lattices satisfy certain lattice-theoretical properties which are related with the cardinalities of the Green’s classes of the considered bands, too. Mainly, there are given disjunctions of equations which define the classes of finite bands.

Linear identities in graph algebras

Agata Pilitowska (2009)

Commentationes Mathematicae Universitatis Carolinae

We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.

Locally finite M-solid varieties of semigroups

Klaus Denecke, Bundit Pibaljommee (2003)

Discussiones Mathematicae - General Algebra and Applications

An algebra of type τ is said to be locally finite if all its finitely generated subalgebras are finite. A class K of algebras of type τ is called locally finite if all its elements are locally finite. It is well-known (see [2]) that a variety of algebras of the same type τ is locally finite iff all its finitely generated free algebras are finite. A variety V is finitely based if it admits a finite basis of identities, i.e. if there is a finite set σ of identities such that V = ModΣ, the class of...

Maximal submonoids of monoids of hypersubstitutions

Ilinka Dimitrova, Jörg Koppitz (2006)

Discussiones Mathematicae - General Algebra and Applications

For a monoid M of hypersubstitutions, the collection of all M-solid varieties forms a complete sublattice of the lattice L(τ) of all varieties of a given type τ. Therefore, by the study of monoids of hypersubstitutions one can get more insight into the structure of the lattice L(τ). In particular, monoids of hypersubstitutions were studied in [9] as well as in [5]. We will give a complete characterization of all maximal submonoids of the monoid Reg(n) of all regular hypersubstitutions of type τ...

Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras

Jerzy Płonka (2008)

Colloquium Mathematicae

Let τ be a type of algebras without nullary fundamental operation symbols. We call an identity φ ≈ ψ of type τ clone compatible if φ and ψ are the same variable or the sets of fundamental operation symbols in φ and ψ are nonempty and identical. For a variety of type τ we denote by c the variety of type τ defined by all clone compatible identities from Id(). We call c the clone extension of . In this paper we describe algebras and minimal generics of all subvarieties of c , where is the variety of...

Currently displaying 41 – 60 of 261