Mal'cev functions on smalgebras
For a monoid M of hypersubstitutions, the collection of all M-solid varieties forms a complete sublattice of the lattice L(τ) of all varieties of a given type τ. Therefore, by the study of monoids of hypersubstitutions one can get more insight into the structure of the lattice L(τ). In particular, monoids of hypersubstitutions were studied in [9] as well as in [5]. We will give a complete characterization of all maximal submonoids of the monoid Reg(n) of all regular hypersubstitutions of type τ...
Let τ be a type of algebras without nullary fundamental operation symbols. We call an identity φ ≈ ψ of type τ clone compatible if φ and ψ are the same variable or the sets of fundamental operation symbols in φ and ψ are nonempty and identical. For a variety of type τ we denote by the variety of type τ defined by all clone compatible identities from Id(). We call the clone extension of . In this paper we describe algebras and minimal generics of all subvarieties of , where is the variety of...
Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.
∗ The research of the author was supported by the Alexander v. Humboldt-Stiftung.The basic concepts are M -hyperidentities, where M is a monoid of hypersubstitutions. The set of all M -solid varieties of semigroups forms a complete sublattice of the lattice of all varieties of semigroups. We fix some specific varieties V of commutative semigroups and study the set of all M -solid subvarieties of V , in particular, if V is nilpotent.
We describe the free objects in the variety of algebras involving several mutually distributive binary operations. Also, we show how an associative operation can be constructed on such systems in good cases, thus obtaining a two way correspondence between LD-monoids (sets with a left self-distributive and a compatible associative operation) and multi-LD-systems (sets with a family of mutually distributive operations).