Recursive inseparability of the sets of identically valid and finitely refutable formulas of some elementary theories of varieties.
Page 1 Next
Ursu, V.I. (2000)
Siberian Mathematical Journal
Ivan Chajda (1997)
Mathematica Bohemica
We describe algebras and varieties for which every ideal is a kernel of a one-block congruence.
Hans Dobbertin (1983)
Mathematische Annalen
Gábor Czédli, Eszter K. Horváth (2002)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Sarawut Phuapong, Sorasak Leeratanavalee (2011)
Matematički Vesnik
Ivan Chajda (1996)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Ivan Chajda (1984)
Archivum Mathematicum
Jaromír Duda (1983)
Archivum Mathematicum
Jaromír Duda (1991)
Czechoslovak Mathematical Journal
Ivan Chajda, Jiří Rachůnek (1983)
Czechoslovak Mathematical Journal
Wiesław Dziobiak (1990)
Fundamenta Mathematicae
Petrich, Mario, Silva, Pedro V. (2000)
Beiträge zur Algebra und Geometrie
B. Jónsson (1970)
Colloquium Mathematicae
Ivan Chajda (2009)
Commentationes Mathematicae Universitatis Carolinae
The concept of relative pseudocomplement is introduced in a commutative directoid. It is shown that the operation of relative pseudocomplementation can be characterized by identities and hence the class of these algebras forms a variety. This variety is congruence weakly regular and congruence distributive. A description of congruences via their kernels is presented and the kernels are characterized as the so-called -ideals.
J. Anusiak, B. Weglorz (1970)
Colloquium Mathematicae
Jaroslav Ježek, Norbert Newrly, Jiří Tůma (1990)
Commentationes Mathematicae Universitatis Carolinae
Anna Chwastyk, Kazimierz Głazek (2006)
Mathematica Slovaca
Ahmad Shafaat (1973)
Archivum Mathematicum
Karel Drbohlav (1981)
Acta Universitatis Carolinae. Mathematica et Physica
Symeon Bozapalidis, Athanasios Alexandrakis (1989)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Page 1 Next