The search session has expired. Please query the service again.
Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...
What is the structure of a pair of finite integers sets A,B ⊂ ℤ with the small value of |A+B|? We answer this question for addition coefficient 3. The obtained theorem sharpens the corresponding results of G. Freiman.
Let G be an additive finite abelian group, and let S be a sequence over G. We say that S is regular if for every proper subgroup H ⊆ G, S contains at most |H|-1 terms from H. Let ₀(G) be the smallest integer t such that every regular sequence S over G of length |S| ≥ t forms an additive basis of G, i.e., every element of G can be expressed as the sum over a nonempty subsequence of S. The constant ₀(G) has been determined previously only for the elementary abelian groups. In this paper, we determine...
Introduction. An old conjecture of P. Erdős repeated many times with a prize offer states that the counting function A(n) of a -sequence A satisfies
.
The conjecture was proved for r=2 by P. Erdős himself (see [5]) and in the cases r=4 and r=6 by J. C. M. Nash in [4] and by Xing-De Jia in [2] respectively. A very interesting proof of the conjecture in the case of all even r=2k by Xing-De Jia is to appear in the Journal of Number Theory [3].
Here we present a different, very short proof of Erdős’...
Currently displaying 1 –
20 of
50