The additive complements of primes and Goldbach's problem
We extend two results of Ruzsa and Vu on the additive complements of primes.
Page 1
Li-Xia Dai, Hao Pan (2014)
Acta Arithmetica
We extend two results of Ruzsa and Vu on the additive complements of primes.
G. Grekos, L. Haddad, C. Helou, J. Pihko (2005)
Acta Arithmetica
Paul Balister, Jeffrey Paul Wheeler (2009)
Acta Arithmetica
Jaroslav Nešetřil, Oriol Serra (2004)
Acta Arithmetica
Hegarty, Peter (2008)
Integers
Torleiv Klove (1983)
Mathematica Scandinavica
Amitabha Tripathi (2008)
Czechoslovak Mathematical Journal
Let be fixed positive integers, and let be any set of positive integers. Let denote the set of all integers representable as a sum of no more than elements of , and let denote the largest integer such that . Let , where the maximum is taken over all sets with elements. We determine when the elements of are in geometric progression. In particular, this results in the evaluation of and yields surprisingly sharp lower bounds for , particularly for .
Gordon, Daniel M. (1994)
The Electronic Journal of Combinatorics [electronic only]
Gautami Bhowmik, Immanuel Halupczok, Jan-Christoph Schlage-Puchta (2010)
Acta Arithmetica
François Dress (1967/1968)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Öystein J. Rödseth (1982)
Mathematica Scandinavica
Page 1