The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Linear recurrence sequences without zeros

Artūras Dubickas, Aivaras Novikas (2014)

Czechoslovak Mathematical Journal

Let a d - 1 , , a 0 , where d and a 0 0 , and let X = ( x n ) n = 1 be a sequence of integers given by the linear recurrence x n + d = a d - 1 x n + d - 1 + + a 0 x n for n = 1 , 2 , 3 , . We show that there are a prime number p and d integers x 1 , , x d such that no element of the sequence X = ( x n ) n = 1 defined by the above linear recurrence is divisible by p . Furthermore, for any nonnegative integer s there is a prime number p 3 and d integers x 1 , , x d such that every element of the sequence X = ( x n ) n = 1 defined as above modulo p belongs to the set { s + 1 , s + 2 , , p - s - 1 } .

Currently displaying 1 – 3 of 3

Page 1