A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z
We give an effective procedure to find minimal bases for ideals of the ring of polynomials over the integers.
An explicit formula for the Mahler measure of the -variable Laurent polynomial is given, in terms of dilogarithms and trilogarithms.
The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications, for example, in image processing and control theory. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldest and commonly used Euclid’s algorithm. However, this is an ill-posed problem, particularly when some unknown noise is applied to the polynomial coefficients. Hence, new methods for the GCD computation...
Schur introduced the problem on the smallest limit point for the arithmetic means of totally positive conjugate algebraic integers. This area was developed further by Siegel, Smyth and others. We consider several generalizations of the problem that include questions on the smallest limit points of symmetric means. The key tool used in the study is the asymptotic distribution of algebraic numbers understood via the weak* limits of their counting measures. We establish interesting properties of the...