Calcul theorique des nombres de Stirling de Premiere espece
Let be a complex valued multiplicative function. For any , we compute the value of the determinant where denotes the greatest common divisor of and , which appear in increasing order in rows and columns. Precisely we prove that This means that is a multiplicative function of . The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions , with , as minimal values of certain...
Consider the group over the ring of algebraic integers of a number field . Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let be the number of matrices in with height bounded by . We determine the asymptotic behaviour of as goes to infinity including an error term,with being the degree of . The constant involves the discriminant of , an integral depending only on the signature of , and the value of the Dedekind zeta function...