Mahler's measure of a polynomial in terms of the number of its monomials
Page 1
Edward Dobrowolski (2006)
Acta Arithmetica
Jitka Kühnová (1979)
Archivum Mathematicum
Gunther Cornelissen, Jonathan Reynolds (2012)
Acta Arithmetica
Jacob Beard, Robert Mcconnel (1982)
Acta Arithmetica
Barry, Paul, Hennessy, Aoife (2010)
Journal of Integer Sequences [electronic only]
E. Kovalevskaja (1973)
Acta Arithmetica
Laurenţiu Panaitopol (2000)
Journal de théorie des nombres de Bordeaux
Dans cet article nous donnons des minorations de la mesure de Mahler des polynômes totalement positifs et totalement réels. Ces résultats sont supérieurs à ceux obtenus par A. Schinzel, M. J. Bertin et V. Flammang.
Moghaddamfar, A.R., Pooya, S.M.H., Salehy, S.Navid, Salehy, S.Nima (2007)
ELA. The Electronic Journal of Linear Algebra [electronic only]
A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy, S. Nima Salehy (2012)
Matematički Vesnik
Siao Hong, Shuangnian Hu, Shaofang Hong (2016)
Open Mathematics
Let f be an arithmetic function and S = {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]) of x, and xj as its (i, j)-entry, respectively. The set S is said to be gcd closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n. In this paper, we give formulas for the determinants of the matrices (f(xi, xj)) and (f[xi, xj]) if S consists of multiple coprime...
Milnes, Paul, Stanley-Albarda, C. (1997)
International Journal of Mathematics and Mathematical Sciences
Clark, Lane (2010)
Integers
Laohakosol, Vichian, Kongsakorn, Kannika (1999)
Bulletin of the Malaysian Mathematical Society. Second Series
Bjorn Poonen (2010)
Acta Arithmetica
Page 1