Mahler's measure of a polynomial in terms of the number of its monomials
Dans cet article nous donnons des minorations de la mesure de Mahler des polynômes totalement positifs et totalement réels. Ces résultats sont supérieurs à ceux obtenus par A. Schinzel, M. J. Bertin et V. Flammang.
Let f be an arithmetic function and S = {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]) of x, and xj as its (i, j)-entry, respectively. The set S is said to be gcd closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n. In this paper, we give formulas for the determinants of the matrices (f(xi, xj)) and (f[xi, xj]) if S consists of multiple coprime...