A cubic analogue of the theta series.
Page 1 Next
S.J. Patterson (1977)
Journal für die reine und angewandte Mathematik
S.J. Patterson (1977)
Journal für die reine und angewandte Mathematik
Ron Graham, Kevin O'Bryant (2005)
Acta Arithmetica
K. Vishnu Namboothiri (2021)
Mathematica Bohemica
Consider the linear congruence equation for , . Let denote the generalized gcd of and which is the largest with dividing and simultaneously. Let be all positive divisors of . For each , define . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on . We generalize their result with generalized gcd restrictions on and prove that for the above linear congruence, the number of solutions...
Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2005)
Acta Arithmetica
Peter Hellekalek (2009)
Acta Arithmetica
И.М. Виноградов
Matematiceskij sbornik
D.A. Burgess (1972)
Journal für die reine und angewandte Mathematik
L. Carlitz (1978)
Mathematica Scandinavica
A. J. Van der Poorten (1975)
Compositio Mathematica
Peter Hellekalek (2010)
Acta Arithmetica
Don Zagier, N.-P. Skoruppa (1989)
Journal für die reine und angewandte Mathematik
Yves Meyer (1971/1972)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Nigel Watt (1988)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Wolfgang Schwarz, Thomas Maxsein, Paul Smith (1991)
Mathematica Slovaca
Hugh Montgomery (1980)
Acta Arithmetica
Gautami Bhowmik, Jan-Christoph Schlage-Puchta (2010)
Acta Arithmetica
Bruce C. Berndt (1978)
Journal für die reine und angewandte Mathematik
D. S. Ramana (2010)
Acta Arithmetica
Imre Z. Ruzsa (1991)
Acta Arithmetica
1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1). A set of residues can be used to get a set of integers in an obvious way. Observe...
Page 1 Next