Previous Page 2

Displaying 21 – 34 of 34

Showing per page

On the k -polygonal numbers and the mean value of Dedekind sums

Jing Guo, Xiaoxue Li (2016)

Czechoslovak Mathematical Journal

For any positive integer k 3 , it is easy to prove that the k -polygonal numbers are a n ( k ) = ( 2 n + n ( n - 1 ) ( k - 2 ) ) / 2 . The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet L -functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums S ( a n ( k ) a ¯ m ( k ) , p ) for k -polygonal numbers with 1 m , n p - 1 , and give an interesting computational formula for it.

On the torsion of the Jacobians of the hyperelliptic curves y² = xⁿ + a and y² = x(xⁿ+a)

Tomasz Jędrzejak (2016)

Acta Arithmetica

Consider two families of hyperelliptic curves (over ℚ), C n , a : y ² = x + a and C n , a : y ² = x ( x + a ) , and their respective Jacobians J n , a , J n , a . We give a partial characterization of the torsion part of J n , a ( ) and J n , a ( ) . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of J 8 , a ( ) . Namely, we show that J 8 , a ( ) t o r s = J 8 , a ( ) [ 2 ] . In addition, we characterize the torsion parts of J p , a ( ) , where p is an odd prime, and...

Currently displaying 21 – 34 of 34

Previous Page 2