Page 1

Displaying 1 – 4 of 4

Showing per page

Théories de Galois différentielles et transcendance

Daniel Bertrand (2009)

Annales de l’institut Fourier

On décrit des preuves galoisiennes des versions logarithmique et exponentielle de la conjecture de Schanuel, pour les variétés abéliennes sur un corps de fonctions.

Transcendence results on the generating functions of the characteristic functions of certain self-generating sets, II

Peter Bundschuh, Keijo Väänänen (2015)

Acta Arithmetica

This article continues a previous paper by the authors. Here and there, the two power series F(z) and G(z), first introduced by Dilcher and Stolarsky and related to the so-called Stern polynomials, are studied analytically and arithmetically. More precisely, it is shown that the function field ℂ(z)(F(z),F(z⁴),G(z),G(z⁴)) has transcendence degree 3 over ℂ(z). This main result contains the algebraic independence over ℂ(z) of G(z) and G(z⁴), as well as that of F(z) and F(z⁴). The first statement is...

Currently displaying 1 – 4 of 4

Page 1