Higher order Euler-like methods.
The paper presents a careful analysis of the Cantor-Zassenhaus polynomial factorization algorithm, thus obtaining tight bounds on the performances, and proposing useful improvements. In particular, a new simplified version of this algorithm is described, which entails a lower computational cost. The key point is to use linear test polynomials, which not only reduce the computational burden, but can also provide good estimates and deterministic bounds of the number of operations needed for factoring....
Dans cet article, nous exploitons la réductibilité d’un polynôme d’une variable pour calculer efficacement l’idéal des relations algébriques entre ses racines.
Dans cet article, nous exploitons la réductibilité d'un polynôme d'une variable pour calculer efficacement l'idéal des relations algébriques entre ses racines.