The search session has expired. Please query the service again.
A polynomial f in the set {Xⁿ+Yⁿ, Xⁿ +Yⁿ-Zⁿ, Xⁿ +Yⁿ+Zⁿ, Xⁿ +Yⁿ-1} lends itself to an elementary proof of the following theorem: if the coordinate ring over ℚ of f is factorial, then n is one or two. We give a list of problems suggested by this result.
For a non-unit a of an atomic monoid H we call
the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.
Currently displaying 1 –
6 of
6