A corollary to the Evans-Griffith Syzygy theorem
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.