-категоричные коммутативные кольца
Page 1 Next
С.А. Чихачев (1977)
Sibirskij matematiceskij zurnal
Carlo Toffalori (1984)
Rendiconti del Seminario Matematico della Università di Padova
S. Basarab, V. Nica (1980/1981)
Manuscripta mathematica
Karsten Schmidt-Göttsch (1987)
Journal für die reine und angewandte Mathematik
Wim Ruitenburg (1987)
Compositio Mathematica
TADEUSZ MOSTOWSKI, GERHARD PFISTER (1979)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Horst Zeitler (1981)
Archiv für mathematische Logik und Grundlagenforschung
Ershov, Yu.L. (2004)
Sibirskij Matematicheskij Zhurnal
Joseph Becker, Leonard Lipshitz (1981)
Fundamenta Mathematicae
A. Prestel, J. Schmid (1990)
Journal für die reine und angewandte Mathematik
Angus Macintyre (1973)
Fundamenta Mathematicae
Timothy Mellor, Marcus Tressl (2012)
Annales de la faculté des sciences de Toulouse Mathématiques
We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.
Manuel Abejón Adámez (1972)
Gaceta Matemática
Popov, V.Yu. (2000)
Siberian Mathematical Journal
Laszlo Fuchs, Saharon Shelah (2003)
Rendiconti del Seminario Matematico della Università di Padova
Latkin, I.V. (2002)
Sibirskij Matematicheskij Zhurnal
Florian Pelupessy, Andreas Weiermann (2012)
Fundamenta Mathematicae
We give bad (with respect to the reverse inclusion ordering) sequences of monomial ideals in two variables with Ackermannian lengths and extend this to multiple recursive lengths for more variables.
Volker Weispfennig (1985)
Archiv für mathematische Logik und Grundlagenforschung
Joseph Becker, Leonard Lipshitz (1980)
Fundamenta Mathematicae
Daniel Herden, Héctor Gabriel Salazar Pedroza (2016)
Commentationes Mathematicae Universitatis Carolinae
An -module has an almost trivial dual if there are no epimorphisms from to the free -module of countable infinite rank . For every natural number , we construct arbitrarily large separable -free -modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.
Page 1 Next