Non-Leibniz algebras with logarithms do not have the trigonometric identity
Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that...