The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Images of locally nilpotent derivations of bivariate polynomial algebras over a domain

Xiaosong Sun, Beini Wang (2024)

Czechoslovak Mathematical Journal

We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let R be a domain containing a field of characteristic zero. We prove that, when R is a one-dimensional unique factorization domain, the image of any locally nilpotent R -derivation of the bivariate polynomial algebra R [ x , y ] is a Mathieu-Zhao subspace. Moreover, we prove that, when R is a Dedekind domain, the image of a locally nilpotent R -derivation of R [ x , y ] with some additional conditions...

Irreducible Jacobian derivations in positive characteristic

Piotr Jędrzejewicz (2014)

Open Mathematics

We prove that an irreducible polynomial derivation in positive characteristic is a Jacobian derivation if and only if there exists an (n-1)-element p-basis of its ring of constants. In the case of two variables we characterize these derivations in terms of their divergence and some nontrivial constants.

Currently displaying 1 – 5 of 5

Page 1