On Border Basis and Gröbner Basis Schemes.
In this note we consider a perturbed mathematical programming problem where both the objective and the constraint functions are polynomial in all underlying decision variables and in the perturbation parameter ε. Recently, the theory of Gröbner bases was used to show that solutions of the system of first order optimality conditions can be represented as Puiseux series in ε in a neighbourhood of ε = 0. In this paper we show that the determination of the branching order and the order of the pole (if...
We generalize some results on reconstructing sets to the case of ideals of 𝕜[X₁,...,Xₙ]. We show that reconstructing sets can be approximated by finite subsets having the property of reconstructing automorphisms of bounded degree.
We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.
We study semigroups of labellings associated to a graph. These generalise the Jukes-Cantor model and phylogenetic toric varieties defined in [Buczynska W., Phylogenetic toric varieties on graphs, J. Algebraic Combin., 2012, 35(3), 421–460]. Our main theorem bounds the degree of the generators of the semigroup by g + 1 when the graph has first Betti number g. Also, we provide a series of examples where the bound is sharp.
Let Δ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of Δ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by Δ. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e-1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d-n, then we show that the ideal of Φn is also perfect, and we construct a covariant which...
Given integers and a constant , consider the space of -tuples of real polynomials in variables of degree , whose coefficients are in absolute value, and satisfying . We study the family of algebraic functions, where is a polynomial, and being a constant depending only on . The main result is a quantitative extension theorem for these functions which is uniform in . This is used to prove Bernstein-type inequalities which are again uniform with respect to .The proof is based on...
When is a polynomial ring or more generally a standard graded algebra over a field , with homogeneous maximal ideal , it is known that for an ideal of , the regularity of powers of becomes eventually a linear function, i.e., for and some integers , . This motivates writing for every . The sequence , called the defect sequence of the ideal , is the subject of much research and its nature is still widely unexplored. We know that is eventually constant. In this article, after...
In 2000 A. Alesina and M. Galuzzi presented Vincent’s theorem “from a modern point of view” along with two new bisection methods derived from it, B and C. Their profound understanding of Vincent’s theorem is responsible for simplicity — the characteristic property of these two methods. In this paper we compare the performance of these two new bisection methods — i.e. the time they take, as well as the number of intervals they examine in order to isolate the real roots of polynomials — against that...