Newton polygons and formal groups: Conjectures by Manin and Grothendieck.
Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs. There is a natural Kawamata log-terminal pair corresponding to an algebraic variety having a regular action of a finite group . In this situation we show that the stringy Euler number of this pair coincides with the physicists’ orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture...