Page 1

Displaying 1 – 7 of 7

Showing per page

Sagbi bases of Cox–Nagata rings

Bernd Sturmfels, Zhiqiang Xu (2010)

Journal of the European Mathematical Society

We degenerate Cox–Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the Batyrev–Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective n -space at n + 3 points, sagbi bases of Cox–Nagata rings establish a link between the Verlinde formula and phylogenetic algebraic geometry, and we use this to answer questions due to D’Cruz–Iarrobino and Buczyńska–Wiśniewski....

Subvarieties of the Hyperelliptic Moduli Determined by Group Actions

Shaska, T. (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 14Q05, 14Q15, 14R20, 14D22.Let Hg be the moduli space of genus g hyperelliptic curves. In this note, we study the locus Hg (G,σ) in Hg of curves admitting a G-action of given ramification type σ and inclusions between such loci. For each genus we determine the list of all possible groups, the inclusions among the loci, and the corresponding equations of the generic curve in Hg (G, σ). The proof of the results is based solely on representations of finite subgroups...

Currently displaying 1 – 7 of 7

Page 1