Page 1 Next

Displaying 1 – 20 of 428

Showing per page

On a bound on algebraic connectivity: the case of equality

Stephen J. Kirkland, Neumann, Michael, Bryan L. Shader (1998)

Czechoslovak Mathematical Journal

In a recent paper the authors proposed a lower bound on 1 - λ i , where λ i , λ i 1 , is an eigenvalue of a transition matrix T of an ergodic Markov chain. The bound, which involved the group inverse of I - T , was derived from a more general bound, due to Bauer, Deutsch, and Stoer, on the eigenvalues of a stochastic matrix other than its constant row sum. Here we adapt the bound to give a lower bound on the algebraic connectivity of an undirected graph, but principally consider the case of equality in the bound when...

On a class of linear models.

Radu Theodorescu (1985)

Trabajos de Estadística e Investigación Operativa

This paper is concerned with classification criteria, asymptotic behaviour and stationarity of a non-Markovian model with linear transition rule, called a linear OM-chain. This problems are solved by making use of the structure of the stochastic matrix appearing in the definition of such a model. The model studied includes as special cases the Markovian model as well as the linear learning model, and has applications in psychological and biological research, in control theory, and in adaptation...

On a criterion of D-stability for P-matrices

Olga Y. Kushel (2016)

Special Matrices

In this paper, we study positive stability and D-stability of P-matrices.We introduce the property of Dθ-stability, i.e., the stability with respect to a given order θ. For an n × n P-matrix A, we prove a new criterion of D-stability and Dθ-stability, based on the properties of matrix scalings.

On a devil’s staircase associated to the joint spectral radii of a family of pairs of matrices

Ian D. Morris, Nikita Sidorov (2013)

Journal of the European Mathematical Society

The joint spectral radius of a finite set of real d × d matrices is defined to be the maximum possible exponential rate of growth of products of matrices drawn from that set. In previous work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain characteristic ratio which depends continuously upon the parameter. In this note we answer some open questions from that paper...

On a generalization of de Rham lemma

Kyoji Saito (1976)

Annales de l'institut Fourier

Let M be a free module over a noetherian ring. For ω 1 , ... , ω k M , let 𝒜 be the ideal generated by coefficients of ω 1 ... ω k . For an element ω p M with p < prof . 𝒜 , if ω ω 1 ... ω k = 0 , there exists η 1 , ... , η k p - 1 M such that ω = i = 1 k η i ω i .This is a generalization of a lemma on the division of forms due to de Rham (Comment. Math. Helv., 28 (1954)) and has some applications to the study of singularities.

Currently displaying 1 – 20 of 428

Page 1 Next