Page 1

Displaying 1 – 1 of 1

Showing per page

The primitive Boolean matrices with the second largest scrambling index by Boolean rank

Yan Ling Shao, Yubin Gao (2014)

Czechoslovak Mathematical Journal

The scrambling index of an n × n primitive Boolean matrix A is the smallest positive integer k such that A k ( A T ) k = J , where A T denotes the transpose of A and J denotes the n × n all ones matrix. For an m × n Boolean matrix M , its Boolean rank b ( M ) is the smallest positive integer b such that M = A B for some m × b Boolean matrix A and b × n Boolean matrix B . In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an n × n primitive matrix M in terms of its Boolean rank b ( M ) , and they also characterized all primitive...

Currently displaying 1 – 1 of 1

Page 1