A result of commutativity of rings.
Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.
We study unitary rings of characteristic 2 satisfying identity for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if or or for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form or where q is a natural number and .