Previous Page 2

Displaying 21 – 28 of 28

Showing per page

On ( σ , τ ) -derivations in prime rings

Mohammad Ashraf, Nadeem-ur-Rehman (2002)

Archivum Mathematicum

Let R be a 2-torsion free prime ring and let σ , τ be automorphisms of R . For any x , y R , set [ x , y ] σ , τ = x σ ( y ) - τ ( y ) x . Suppose that d is a ( σ , τ ) -derivation defined on R . In the present paper it is shown that ( i ) if R satisfies [ d ( x ) , x ] σ , τ = 0 , then either d = 0 or R is commutative ( i i ) if I is a nonzero ideal of R such that [ d ( x ) , d ( y ) ] = 0 , for all x , y I , and d commutes with both σ and τ , then either d = 0 or R is commutative. ( i i i ) if I is a nonzero ideal of R such that d ( x y ) = d ( y x ) , for all x , y I , and d commutes with τ , then R is commutative. Finally a related result has been obtain for ( σ , τ ) -derivation....

Currently displaying 21 – 28 of 28

Previous Page 2