Displaying 41 – 60 of 122

Showing per page

Commutativity theorems for rings with differential identities on Jordan ideals

L. Oukhtite, A. Mamouni, Mohammad Ashraf (2013)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate commutativity of ring R with involution ' * ' which admits a derivation satisfying certain algebraic identities on Jordan ideals of R . Some related results for prime rings are also discussed. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Jordan ideals and derivations in prime near-rings

Abdelkarim Boua, Lahcen Oukhtite, Abderrahmane Raji (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate 3 -prime near-rings with derivations satisfying certain differential identities on Jordan ideals, and we provide examples to show that the assumed restrictions cannot be relaxed.

Lie ideals in prime Γ-rings with derivations

Nishteman N. Suliman, Abdul-Rahman H. Majeed (2013)

Discussiones Mathematicae - General Algebra and Applications

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M. In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U)⊂ Z, (ii) d(U)⊂ U and d²(U)=0, (iii) d(U)⊂ U, d²(U)⊂ Z.

Currently displaying 41 – 60 of 122