On 0-simple semirings, semigroup semirings and two kinds of division semirings.
Let be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph whose vertices are all elements of and two distinct vertices and are adjacent if and only if the product of the co-ideals generated by and is . Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph and .
We introduce the k-radicals of Green's relations in semirings with a semilattice additive reduct, introduce the notion of left k-regular (right k-regular) semirings and characterize these semirings by k-radicals of Green's relations. We also characterize the semirings which are distributive lattices of left k-simple subsemirings by k-radicals of Green's relations.
In this paper we extend the concept of an -fuzzy (characteristic) left (resp. right) ideal of a ring to a semiring , and we show that each level left (resp. right) ideal of an -fuzzy left (resp. right) ideal of is characteristic iff is -fuzzy characteristic.
We study some properties of -fuzzy left (right) ideals of a semiring related to level left (right) ideals.
Let be the general Boolean algebra and a linear operator on . If for any in (, respectively), is regular (invertible, respectively) if and only if is regular (invertible, respectively), then is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over . Meanwhile, noting that a general Boolean algebra is isomorphic...