On certain class of unitarizable representations of the Lie algebra
[For the entire collection see Zbl 0742.00067.]Let be the Lie algebra , and let be the universal enveloping algebra for . Let be the center of . The authors consider the chain of Lie algebras . Then is an associative algebra which is called the Gel’fand-Zetlin subalgebra of . A module is called a -module if , where the summation is over the space of characters of and , , . The authors describe several properties of - modules. For example, they prove that if for some ...
[For the entire collection see Zbl 0742.00067.]In the first part some general results on Hecke algebras are recalled; the structure constants corresponding to the standard basis are defined; in the following the example of the commuting algebra of the Gelfand- Graev representation of the general linear group is examined; here is a finite field of elements; the structure constants are explicitly determined first for the standard basis and then for a new basis obtained via a Mellin-transformation....