Page 1

Displaying 1 – 9 of 9

Showing per page

Exponential Objects

Marco Riccardi (2015)

Formalized Mathematics

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

Some properties of Lorenzen ideal systems

Aleka Kalapodi, Angeliki Kontolatou, Jiří Močkoř (2000)

Archivum Mathematicum

Let G be a partially ordered abelian group ( p o -group). The construction of the Lorenzen ideal r a -system in G is investigated and the functorial properties of this construction with respect to the semigroup ( R ( G ) , , ) of all r -ideal systems defined on G are derived, where for r , s R ( G ) and a lower bounded subset X G , X r s = X r X s . It is proved that Lorenzen construction is the natural transformation between two functors from the category of p o -groups with special morphisms into the category of abelian ordered semigroups.

Currently displaying 1 – 9 of 9

Page 1