Légitimité des catégories de préfaisceaux
Page 1
François Foltz (1979)
Diagrammes
Rudolf Fiby (1973)
Matematický časopis
João Pedro P. dos Santos (2011)
Bulletin de la Société Mathématique de France
We study liftings or deformations of -modules ( is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic -modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given -module in positive characteristic. At the end we compare the problems...
P. Ageron (1997)
Diagrammes
Robert J. MacG. Dawson (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Winfried Hochstättler, Jaroslav Nešetřil (1999)
Commentationes Mathematicae Universitatis Carolinae
In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas' Lemma) and Minty's Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas' Lemma. This research helped to isolate perhaps the most natural definition of strong maps for oriented matroids....
Bohumil Šmarda (1986)
Czechoslovak Mathematical Journal
Page 1