𝒯 -semiring pairs

Jaiung Jun; Kalina Mincheva; Louis Rowen

Kybernetika (2022)

  • Volume: 58, Issue: 5, page 733-759
  • ISSN: 0023-5954

Abstract

top
We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.

How to cite

top

Jun, Jaiung, Mincheva, Kalina, and Rowen, Louis. "$\mathcal {T}$-semiring pairs." Kybernetika 58.5 (2022): 733-759. <http://eudml.org/doc/299476>.

@article{Jun2022,
abstract = {We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.},
author = {Jun, Jaiung, Mincheva, Kalina, Rowen, Louis},
journal = {Kybernetika},
keywords = {pair; semiring; system; triple; shallow; algebraic; integral; affine; Ore; negation map; congruence; module},
language = {eng},
number = {5},
pages = {733-759},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$\mathcal \{T\}$-semiring pairs},
url = {http://eudml.org/doc/299476},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Jun, Jaiung
AU - Mincheva, Kalina
AU - Rowen, Louis
TI - $\mathcal {T}$-semiring pairs
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 5
SP - 733
EP - 759
AB - We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.
LA - eng
KW - pair; semiring; system; triple; shallow; algebraic; integral; affine; Ore; negation map; congruence; module
UR - http://eudml.org/doc/299476
ER -

References

top
  1. Akian, M., Gaubert, S., Guterman, A., 10.1090/conm/495/09689, In: Tropical and Idempotent Mathematics (G. L. Litvinov and S. N. Sergeev, eds.), Contemp. Math. 495 (2009), 1-38. DOI10.1090/conm/495/09689
  2. Akian, M., Gaubert, S., Rowen, L., Linear algebra over systems., Preprint, 2022. 
  3. Akian, M., Gaubert, S., Rowen, L., From systems to hyperfields and related examples., Preprint, 2022. 
  4. Alarcon, F., Anderson, D., Commutative semirings and their lattices of ideals., J. Math. 20 (1994), 4. 
  5. Baker, M., Bowler, N., , Adv. Math. 343 (2019), 821-863. DOI
  6. Bell, J., Zelmanov, E., , Inventiones Math. 224 (2021), 683-697. DOI
  7. Connes, A., Consani, C., , Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter 2010, pp. 147-198. DOI
  8. Chapman, A., Gatto, L., Rowen, L., , Rendiconti del Circolo Matematico di Palermo Series 2, 2022 DOI
  9. Costa, A. A., , Publ. Math. Decebren 10 (1963), 14-29. DOI
  10. Dress, A., Duality theory for finite and infinite matroids with coefficients., Advances Math. 93 (1986), 2, 214-250. 
  11. Dress, A., Wenzel, W., , Beitrage zur Algebra und Geometrie/ Contributions to Algebra und Geometry 52 (2011), 2, 431-461. DOI
  12. Elizarov, N., Grigoriev, D.,  DOI
  13. Gatto, L., Rowen, L., , Proc. American Mathematical Society, series B, 7 (2020), 183-201. DOI
  14. Gaubert, S., Theorie des systemes lineaires dans les diodes., These, Ecole des Mines de Paris 1992. 
  15. Gaubert, S., Methods and applications of (max,+) linear algebra., STACS' 97, number 1200 in LNCS, Lübeck, Springer 1997. 
  16. Giansiracusa, J., Jun, J., Lorscheid, O., , Beitr. Algebra Geom. 58 (2017), 735-764. DOI
  17. Golan, J., The theory of semirings with applications in mathematics and theoretical computer science., Longman Sci Tech. 54 (1992). 
  18. Greenfeld, B., , J. Algebra 489 (2017), 427-434. DOI
  19. Hilgert, J., Hofmann, K., , Trans. Amer. Math. Soc. 288 (1985), 2. DOI
  20. Izhakian, Z., , Commun. Algebra 37 (2009), 4, 1445-1468. DOI
  21. Izhakian, Z., Rowen, L., , Adv. Math. 225 (2010), 4, 2222-2286. DOI
  22. Izhakian, Z., Rowen, L., , Israel J. Math. 182 (2011), 1, 383-424. DOI
  23. Jacobson, N., Basic Algebra II., Freeman 1980. 
  24. Joo, D., Mincheva, K., , Selecta Mathematica 24 (2018), 3, 2207-2233. DOI
  25. Jun, J., Mincheva, K., Rowen, L., Projective systemic modules., J. Pure Appl. Algebra 224 (2020), 5, 106-243. 
  26. Jun, J., , Adv. Math. 323 (2018), 142-192. DOI
  27. Jun, J., Rowen, L., Categories with negation., In: Categorical, Homological and Combinatorial Methods in Algebra (AMS Special Session in honor of S. K. Jain's 80th birthday), Contempor. Math. 751 (2020), 221-270. 
  28. Katsov, Y., 10.1007/BF00970503, Siberian J. Math. 19 (1978), 222-229, trans. from Sib. Mat. Zhurnal 19 (1978), 2, 318-327. DOI10.1007/BF00970503
  29. Krasner, M., 10.1155/S0161171283000265, Int. J. Math. Math. Sci. 6 (1983), 2, 307-312. DOI10.1155/S0161171283000265
  30. Krause, G. R., Lenagan, T. H., Growth of algebras and Gelfand-Kirillov dimension., Amer. Math. Soc. Graduate Stud. Math. 22 (2000). 
  31. Ljapin, E. S., Semigroups., AMS Translations of Mathematical Monographs 3 (1963), 519 pp. 
  32. Lorscheid, O., , Adv. Math. 229 (2012), 3, 1804-1846. DOI
  33. Lorscheid, O., A blueprinted view on 𝔽 1 -geometry., In: Absolute Arithmetic and -geometry (Koen Thas. ed.), European Mathematical Society Publishing House 2016. 
  34. Rowen, L. H., Ring Theory. Vol. I., Academic Press, Pure and Applied Mathematics 127, 1988. 
  35. Rowen, L. H., Graduate algebra: Noncommutative View., AMS Graduate Studies in Mathematics 91, 2008. 
  36. Rowen, L. H., 10.1007/s40879-021-00499-0, Europ. J. Math. 8 (2022), 62-138. DOI10.1007/s40879-021-00499-0
  37. Rowen, L. H.,  DOI
  38. Smoktunowicz, A., , Selecta Mathematica 20 (2014) 4, 1197-1212. DOI
  39. Shneerson, L. M., , Int. J. Algebra Comput., Special Issue: International Conference on Group Theory "Combinatorial, Geometric and Dynamical Aspects of Infinite Groups"; (L. Bartholdi, T. Ceccherini-Silberstein, T. Smirnova-Nagnibeda, A. Zuk, eds.), 15 (2005), 05, 1189-1204. DOI
  40. Viro, O. Y.,  DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.