On Extension of Functors onto the Kleisli Category of the Inclusion Hyperspace Monad
It is proved that there exists no extension of any non-trivial weakly normal functor of finite degree onto the Kleisli category of the inclusion hyperspace monad.
It is proved that there exists no extension of any non-trivial weakly normal functor of finite degree onto the Kleisli category of the inclusion hyperspace monad.
The problem of extension of normal functors to the Kleisli categories of the inclusion hyperspace monad and its submonads is considered. Some negative results are obtained.