A -categorical approach to change of base and geometric morphisms I
Page 1
A. Carboni, G. M. Kelly, R. J. Wood (1991)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Burroni, Elisabeth, Penon, Jacques (2010)
Theory and Applications of Categories [electronic only]
Janelidze, G., Kelly, G.M. (2001)
Theory and Applications of Categories [electronic only]
Kimmo I. Rosenthal (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
G. M. Kelly (1986)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Crans, Sjoerd E. (1999)
Theory and Applications of Categories [electronic only]
Borceux, F., Quinteiro, C., Rosický, J. (1998)
Theory and Applications of Categories [electronic only]
Cruttwell, G.S.H., Shulman, Michael A. (2010)
Theory and Applications of Categories [electronic only]
Ross Street (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Hans-Jürgen Vogel (2003)
Discussiones Mathematicae - General Algebra and Applications
The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols. If the object class of a dhts-category...
Francis Borceux (1980)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Albert Burroni (1982)
Diagrammes
C. Ruiz Salguero, R. Ruiz (1976)
Revista colombiana de matematicas
Kock, Anders, Reyes, Gonzalo E. (1999)
Theory and Applications of Categories [electronic only]
Page 1