Page 1

Displaying 1 – 4 of 4

Showing per page

A note on product structures on Hochschild homology of schemes

Abhishek Banerjee (2011)

Colloquium Mathematicae

We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring k to define the Hochschild homologies HH⁎(X/S) and cyclic homologies HC⁎(X/S) of a scheme X with respect to an arbitrary base scheme S. Our main purpose is to study product structures on the Hochschild homology groups HH⁎(X/S). In particular, we show that H H ( X / S ) = n H H ( X / S ) carries the structure of a graded algebra.

Algebraic K -theory of the first Morava K -theory

Christian Ausoni, John Rognes (2012)

Journal of the European Mathematical Society

For a prime p 5 , we compute the algebraic K -theory modulo p and v 1 of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v 1 topological Hochschild homology. Using a localization sequence, we also compute the K -theory modulo p and v 1 of the first Morava K -theory.

Currently displaying 1 – 4 of 4

Page 1