Coarse homology theories.
Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the -theory of the corresponding reduced -algebras. Our proofs do not depend on the Baum–Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.
This survey of the work of the author with several collaborators presents the way groupoids appear and can be used in index theory. We define the general tools, and apply them to the case of manifolds with corners, ending with a topological index theorem.