Page 1

Displaying 1 – 9 of 9

Showing per page

A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms

Paolo Mercorelli (2012)

Kybernetika

In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined...

A geometric procedure for robust decoupling control of contact forces in robotic manipulation

Paolo Mercorelli, Domenico Prattichizzo (2003)

Kybernetika

This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...

A Riemann-Roch-Hirzebruch formula for traces of differential operators

Markus Engeli, Giovanni Felder (2008)

Annales scientifiques de l'École Normale Supérieure

Let D be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an n -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of D as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology H H 2 n ( 𝒟 n , 𝒟 n * ) of the algebra of differential operators on a formal neighbourhood of a...

Algebraic K -theory of the first Morava K -theory

Christian Ausoni, John Rognes (2012)

Journal of the European Mathematical Society

For a prime p 5 , we compute the algebraic K -theory modulo p and v 1 of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v 1 topological Hochschild homology. Using a localization sequence, we also compute the K -theory modulo p and v 1 of the first Morava K -theory.

Asymptotic behaviour of numerical invariants of algebraic varieties

F. L. Zak (2012)

Journal of the European Mathematical Society

We show that if the degree of a nonsingular projective variety is high enough, maximization of any of the most important numerical invariants, such as class, Betti number, and any of the Chern or middle Hodge numbers, leads to the same class of extremal varieties. Moreover, asymptotically (say, for varieties whose total Betti number is big enough) the ratio of any two of these invariants tends to a well-defined constant.

Augmented Γ-spaces, the stable rank filtration, and a bu analogue of the Whitehead conjecture

Gregory Z. Arone, Kathryn Lesh (2010)

Fundamenta Mathematicae

We explore connections between our previous paper [J. Reine Angew. Math. 604 (2007)], where we constructed spectra that interpolate between bu and Hℤ, and earlier work of Kuhn and Priddy on the Whitehead conjecture and of Rognes on the stable rank filtration in algebraic K-theory. We construct a "chain complex of spectra" that is a bu analogue of an auxiliary complex used by Kuhn-Priddy; we conjecture that this chain complex is "exact"; and we give some supporting evidence. We tie this to work of...

Currently displaying 1 – 9 of 9

Page 1