Factorizations of Finite Groups.
We prove that all finite simple groups of Lie type, with the exception of the Suzuki groups, can be made into a family of expanders in a uniform way. This confirms a conjecture of Babai, Kantor and Lubotzky from 1989, which has already been proved by Kassabov for sufficiently large rank. The bounded rank case is deduced here from a uniform result for which is obtained by combining results of Selberg and Drinfeld via an explicit construction of Ramanujan graphs by Lubotzky, Samuels and Vishne.