On the Homology Theory of Central Group Extensions II. The Exact Sequence in the General Case
In this paper we study some aspects of the cohomology of groups and we construct a central extension of the symplectic group .
All finite simple groups of Lie type of rank over a field of size , with the possible exception of the Ree groups , have presentations with at most 49 relations and bit-length . Moreover, and have presentations with 3 generators; 7 relations and bit-length , while has a presentation with 6 generators, 25 relations and bit-length .
We describe partial semi-simplicial resolutions of moduli spaces of surfaces with tangential structure. This allows us to prove a homological stability theorem for these moduli spaces, which often improves the known stability ranges and gives explicit stability ranges in many new cases. In each of these cases the stable homology can be identified using the methods of Galatius, Madsen, Tillmann and Weiss.
The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.
We determine the stable cohomology groups ( of the alternating groups for all integers n and i, and all odd primes p.
It is not known whether or not the stable rational cohomology groups H*(Aut(F∞);Q) always vanish (see Hatcher in [5] and Hatcher and Vogtmann in [7] where they pose the question and show that it does vanish in the first 6 dimensions). We show that either the rational cohomology does not vanish in certain dimensions, or the integral cohomology of a moduli space of pointed graphs does not stabilize in certain other dimensions. Similar results are stated for groups of outer automorphisms. This yields...