Acyclic groups of automorphisms.
We prove that the natural map from bounded to usual cohomology is injective if is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for : the stable commutator length vanishes and any –action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating to the continuous bounded cohomology of the ambient group...
We give homological conditions on groups such that whenever the conditions hold for a group G, there is a bound on the orders of finite subgroups of G. This extends a result of P. H. Kropholler. We also suggest a weaker condition under which the same conclusion might hold.
Nous catégorifions explicitement les coefficients de la matrice de la représentation de Burau en utilisant des méthodes géométriques élémentaires. Nous montrons que cette catégorification est fidèle dans le sens où elle détecte la tresse triviale.