Cohomology of classifying spaces of complex Lie groups and related discrete groups.
Let be a prime and let be a -group of matrices in , for some integer . In this paper we show that, when , a certain subgroup of the cohomology group is trivial. We also show that this statement can be false when . Together with a result of Dvornicich and Zannier (see [2]), we obtain that any algebraic torus of dimension enjoys a local-global principle on divisibility by .
We give a survey of the work of Milnor, Friedlander, Mislin, Suslin and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields.
In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.
We show that the second group of cohomology with compact supports is nontrivial for three-dimensional systolic pseudomanifolds. It follows that groups acting geometrically on such spaces are not Poincaré duality groups.
Vector-valued Siegel modular forms may be found in certain cohomology groups with coefficients lying in an irreducible representation of the symplectic group. Using functoriality in the coefficients, we show that the ordinary components of the cohomology are independent of the weight parameter. The meaning of ordinary depends on a choice of parabolic subgroup of , giving a particular direction in the change of weight. Our results complement those of Taylor and Tilouine-Urban for the two other possible...