Page 1

Displaying 1 – 9 of 9

Showing per page

A characterization of Ext(G,ℤ) assuming (V = L)

Saharon Shelah, Lutz Strüngmann (2007)

Fundamenta Mathematicae

We complete the characterization of Ext(G,ℤ) for any torsion-free abelian group G assuming Gödel’s axiom of constructibility plus there is no weakly compact cardinal. In particular, we prove in (V = L) that, for a singular cardinal ν of uncountable cofinality which is less than the first weakly compact cardinal and for every sequence ( ν p : p Π ) of cardinals satisfying ν p 2 ν (where Π is the set of all primes), there is a torsion-free abelian group G of size ν such that ν p equals the p-rank of Ext(G,ℤ) for every...

Almost free splitters

Rüdiger Göbel, Saharon Shelah (1999)

Colloquium Mathematicae

Let R be a subring of the rationals. We want to investigate self splitting R-modules G, that is, such that E x t R ( G , G ) = 0 . For simplicity we will call such modules splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper [8]). Our investigation continues [5]. In [5] we answered an open problem by constructing a large class of splitters. Classical splitters are free modules and torsion-free, algebraically compact ones. In [5] we concentrated on splitters which are larger...

An addendum and corrigendum to "Almost free splitters" (Colloq. Math. 81 (1999), 193-221)

Rüdiger Göbel, Saharon Shelah (2001)

Colloquium Mathematicae

Let R be a subring of the rational numbers ℚ. We recall from [3] that an R-module G is a splitter if E x t ¹ R ( G , G ) = 0 . In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality ℵ₁ under the negation of the special continuum hypothesis CH.

Currently displaying 1 – 9 of 9

Page 1