Displaying 121 – 140 of 186

Showing per page

Principal bundles, groupoids, and connections

Anders Kock (2007)

Banach Center Publications

We clarify in which precise sense the theory of principal bundles and the theory of groupoids are equivalent; and how this equivalence of theories, in the differentiable case, reflects itself in the theory of connections. The method used is that of synthetic differential geometry.

Quandle coverings and their Galois correspondence

Michael Eisermann (2014)

Fundamenta Mathematicae

This article establishes the algebraic covering theory of quandles. For every connected quandle Q with base point q ∈ Q, we explicitly construct a universal covering p: (Q̃,q̃̃) → (Q,q). This in turn leads us to define the algebraic fundamental group π ( Q , q ) : = A u t ( p ) = g A d j ( Q ) ' | q g = q , where Adj(Q) is the adjoint group of Q. We then establish the Galois correspondence between connected coverings of (Q,q) and subgroups of π₁(Q,q). Quandle coverings are thus formally analogous to coverings of topological spaces, and resemble Kervaire’s...

Currently displaying 121 – 140 of 186